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Two-dimensional (plane) solitary waves on the surface of water are known to
bifurcate from linear sinusoidal wavetrains at specific wavenumbers k = k0 where
the phase speed c(k) attains an extremum (dc/dk|0 = 0) and equals the group speed.
In particular, such an extremum occurs in the long-wave limit k0 = 0, furnishing the
familiar solitary waves of the Korteweg–de Vries (KdV) type in shallow water. In
addition, when surface tension is included and the Bond number B = T/(ρgh2) < 1/3
(T is the coefficient of surface tension, ρ the fluid density, g the gravitational
acceleration and h the water depth), c(k) features a minimum at a finite wavenumber
from which gravity–capillary solitary waves, in the form of wavepackets governed
by the nonlinear Schrödinger (NLS) equation to leading order, bifurcate in water of
finite or infinite depth. Here, it is pointed out that an entirely analogous scenario is
valid for the bifurcation of three-dimensional solitary waves, commonly referred to
as ‘lumps’, that are locally confined in all directions. Apart from the known lump
solutions of the Kadomtsev–Petviashvili I equation for B > 1/3 in shallow water,
gravity–capillary lumps, in the form of locally confined wavepackets, are found for
B < 1/3 in water of finite or infinite depth; like their two-dimensional counterparts,
they bifurcate at the minimum phase speed and are governed, to leading order, by
an elliptic–elliptic Davey–Stewartson equation system in finite depth and an elliptic
two-dimensional NLS equation in deep water. In either case, these lumps feature
algebraically decaying tails owing to the induced mean flow.

1. Introduction
Two distinct kinds of solitary waves are known to exist on the surface of water,

assuming two-dimensional (plane) disturbances. The first is found in shallow water
and, in the weakly nonlinear limit, is governed by the celebrated Korteweg–de Vries
(KdV) equation (see, for example, Whitham 1974, § 13.11); the other is possible in
water of finite or infinite depth but only if surface tension is present.

The latter class of solitary waves is closely connected with the fact that the phase
speed features a minimum at a finite wavenumber when both gravity and surface
tension are included: as the phase speed is equal to the group speed there, this
minimum is the bifurcation point of gravity–capillary solitary waves in the form of
wavepackets, with crests moving at the same speed as the wave envelope (Akylas
1993; Longuet-Higgins 1993). In fact, the long-water-wave speed, at which solitary
waves bifurcate in shallow water, is a local maximum (minimum) of the phase speed
if the Bond number B = T/(ρgh2) (T is the coefficient of surface tension, ρ is the
fluid density, g is the gravitational acceleration and h the water depth) is less (greater)
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than 1/3; both kinds of solitary water waves thus bifurcate at extrema of the phase
speed.

While solitary waves of the KdV type have been known for over a century, gravity–
capillary solitary waves of the wavepacket type were discovered relatively recently.
Longuet-Higgins (1989) first presented numerical evidence of gravity–capillary solitary
waves in deep water, followed by a number of related analytical and computational
studies (see Dias & Kharif 1999 for a comprehensive review). It turns out that
two symmetric solution branches, one corresponding to elevation and the other to
depression waves, bifurcate from a linear sinusoidal wavetrain at the minimum phase
speed. In the small-amplitude limit, close to bifurcation, these branches are governed
by the nonlinear Schrödinger (NLS) equation, their difference being merely a shift of
the wave crests by half a wavelength relative to the peak of the wave envelope. In
addition, there is an infinity of other symmetric and asymmetric solution branches
that bifurcate at finite amplitude below the minimum phase speed; these may be
interpreted as multi-packet solitary waves and are beyond the reach of the NLS
equation, although they can be captured by a more refined perturbation approach
(Yang & Akylas 1997).

The theory of three-dimensional solitary waves, commonly referred to as ‘lumps’,
that are locally confined in all directions, is not as well developed. Most prior work
centres around the Kadomtsev–Petviashvili (KP) equation, an extension of the KdV
equation that allows for weak three-dimensional effects in the propagation of weakly
nonlinear waves in shallow water. According to the KP equation, KdV solitary
waves are stable (unstable) to transverse perturbations when the Bond number is less
(greater) than 1/3. In the regime where instability is present, the KP equation (in
which case usually called the KP-I equation) admits lump solutions with algebraically
decaying tails (see, for example, Ablowitz & Segur 1979). Similar lumps were found
numerically by Berger & Milewski (2000) based on the Benney–Luke equations with
surface tension, a more general system of weakly nonlinear shallow-water equations
than the KP-I. Like their KP-I counterparts, these lumps are possible only if the
Bond number is greater than 1/3, a condition that restricts the water depth to less
than a few mm, so neglecting viscous effects cannot be justified.

In the present study, it is pointed out that, when surface tension is present, lumps
of the wavepacket type can be found for B < 1/3 in water of finite or infinite depth.
In direct analogy with two-dimensional gravity–capillary solitary waves, these lumps
again bifurcate at the minimum gravity–capillary phase speed and, close to bifurcation,
they can be approximated as three-dimensional locally confined wavepackets with
envelope moving at the same speed as the wave crests. In water of finite depth, the
wave envelope and the induced mean flow are strongly coupled and are governed
by an elliptic–elliptic Davey–Stewartson equation system. It turns out that the mean
flow decays algebraically and so do the tails of lumps, in contrast to two-dimensional
solitary waves in water of finite depth that decay exponentially at infinity. In deep
water, on the other hand, the induced mean flow is relatively weak and the wave
envelope is governed by an elliptic two-dimensional NLS equation to leading order;
however, the induced mean flow, which again decays algebraically, prevails at the lump
tails, as for two-dimensional deep-water solitary waves (Akylas, Dias & Grimshaw
1998).

While the present paper was in its final stages of preparation, we became aware
of two as yet unpublished computational studies of gravity–capillary lumps, which
are complementary to our weakly nonlinear analysis. Based on the full gravity–
capillary water-wave equations, Parau, Vanden-Broeck & Cooker (2005) numerically
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computed two branches of symmetric elevation and depression lumps that bifurcate at
the minimum phase speed; close to the bifurcation point, these lumps resemble three-
dimensional wavepackets. Retaining only quadratic nonlinear terms in the governing
equations, Milewski (2005) used a numerical continuation procedure to compute
gravity–capillary lumps in the form of locally confined wavepackets in water of large
depth, starting from shallow-water lumps of the KP-I type.

A rigorous existence proof of fully localized three-dimensional solitary-wave
solutions of the gravity–capillary water-wave problem was devised by Groves &
Sun (2005).

2. Expansion near the bifurcation point
Consider the classical problem of waves on the surface of water of depth h under

the action of both gravity and surface tension. For the purpose of discussing waves of
permanent form moving with speed c, we introduce dimensionless variables employing
T/(ρc2) as lengthscale and T/(ρc3) as timescale, where ρ denotes the fluid density
and T the coefficient of surface tension. The phase speed of linear sinusoidal gravity–
capillary waves with wavenumber k is thus normalized to unity, and the dispersion
relation takes the form

G(k; α, H ) ≡ k(α + k2)tanh kH − k2 = 0, (2.1)

where

α =
gT

ρc4
, H =

hρc2

T
, (2.2)

g being the acceleration due to gravity. This introduces two flow parameters, the
speed parameter α and the inverse Weber number H ; the Bond number,

B =
T

ρgh2
, (2.3)

which is independent of the wave speed, is expressed in terms of α and H via

B =
1

αH 2
. (2.4)

Lumps bifurcate from linear sinusoidal waves with wavenumber k = k0 corres-
ponding to the minimum gravity–capillary phase speed and, hence, to a double root
of the dispersion relation (2.1):

G|0 = 0,
∂G

∂k

∣∣∣∣
0

= 0. (2.5)

In general, for a given value of one of the two independent flow parameters,
conditions (2.5) specify the wavenumber k0 and the value of the other parameter
at the bifurcation point. Here, for convenience, we treat H as a free parameter so,
combining (2.1) and (2.5), k0 and α0 are determined from

k0tanh k0H +
k0H

sinh 2k0H
− 1

2
= 0, (2.6a)

α0 =
k0

tanh k0H
− k2

0 . (2.6b)
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Equation (2.6a) has real roots ±k0 only if 3 � H < ∞, and the Bond number (2.3)
has to be less than 1/3 for bifurcation of lumps to be possible. In particular, H → 3
corresponds to the long-wave limit

k0 → 0, α0 → 1
3
, (2.7)

while, in the deep-water limit H → ∞,

k0 → 1
2
, α0 → 1

4
. (2.8)

In order to remain locally confined, a lump must travel at a speed less than the
minimum gravity–capillary phase speed. Therefore α > α0, and, in the neighbourhood
of the bifurcation point, we write

α = α0 + ε2, (2.9)

ε being a small parameter (0 <ε � 1).
Close to the bifurcation point, moreover, lumps are in the form of small-amplitude

wavepackets with crests moving at the same speed (equal to 1 in the present
normalization) as the wave envelope. The velocity potential φ(ξ, y, z) and the free-
surface elevation z = η(ξ, y) of a lump propagating along the x-direction (y and z

denoting the transverse and vertical directions, respectively) then are expanded as
follows:

φ = εA0(z, X, Y ) + ε{A1(z, X, Y )eiθ0 + c.c.} + ε2{A2(z, X, Y )e2iθ0 + c.c.} + · · ·, (2.10)

η = ε{S1(X, Y )eiθ0 + c.c.} + ε2S0(X, Y ) + ε2{S2(X, Y )e2iθ0 + c.c.} + · · ·, (2.11)

where ξ = x−t , θ0 = k0ξ and c.c. denotes the complex conjugate. The carrier wavevector
κ0 = (k0, 0) has magnitude |κ0| = k0 as obtained from (2.6) and points in the x-direction,
the crests thus being perpendicular to the propagation direction. The above expansions
also assume that the amplitudes A0, A1, A2, . . . and S0, S1, S2, . . . , which depend on
the ‘stretched’ variables (X, Y ) = ε(ξ, y), remain locally confined in both horizontal
directions ξ and y.

The procedure for determining the amplitudes of the various harmonics in
expansions (2.10) and (2.11) closely parallels that followed by Benney & Roskes
(1969) and Davey & Stewartson (1974) in deriving evolution equations for three-
dimensional pure-gravity wavepackets, and by Djordjevic & Redekopp (1977) and
Ablowitz & Segur (1979) for gravity–capillary wavepackets.

Briefly, upon substituting (2.10) into Laplace’s equation for φ,

φξξ + φyy + φzz = 0 (−H < z < η), (2.12)

and imposing the bottom boundary condition

φz = 0 (z = −H ), (2.13)

it follows that

A1 = a1

cosh k0(z + H )

cosh k0H
− ε

{
i
∂a1

∂X
(z + H )

sinh k0(z + H )

cosh k0H

}

− ε2

{
1

2

∂2a1

∂X2
(z + H )2

cosh k0(z + H )

cosh k0H
+

1

2k0

∂2a1

∂Y 2
(z + H )

sinh k0(z + H )

cosh k0H

}
+ · · · ,

(2.14a)
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A0 = a0 − ε2

{
1

2
(z + H )2

(
∂2a0

∂X2
+

∂2a0

∂Y 2

)}
+ · · · , (2.14b)

A2 = a2

cosh 2k0(z + H )

cosh 2k0H
+ · · · . (2.14c)

The next task is to satisfy the free-surface boundary conditions

φz + ηξ = φξηξ + φyηy (z = η), (2.15)

αη −φξ + 1
2

(
φ2

ξ +φ2
y +φ2

z

)
=

ηξξ

(
1 + η2

y

)
+ ηyy

(
1 + η2

ξ

)
− 2ηξyηξηy(

1 + η2
ξ + η2

y

)3/2
(z = η). (2.16)

Substituting expansions (2.10) and (2.11) in (2.15) and (2.16), making use of (2.14),
and collecting mean terms, correct to O(ε3), yields

−∂S0

∂X
+ H

(
∂2a0

∂X2
+

∂2a0

∂Y 2

)
+ 2

(
α0 + k2

0

) ∂

∂X
|S1|2 = 0, (2.17a)

α0S0 − ∂a0

∂X
+

((
α0 + k2

0

)2 − k2
0

)
|S1|2 = 0. (2.17b)

Eliminating S0 from equations (2.17), it follows that a0(X, Y ) satisfies

Q2 ∂2a0

∂X2
+

∂2a0

∂Y 2
= λ

∂

∂X
|S1|2, (2.18)

where

λ =
k2

0 −
(
α0 + k2

0

)(
3α0 + k2

0

)
α0H

, Q2 =
α0H − 1

α0H
. (2.19)

According to (2.2), α0H = gh/c2
0, (gh)1/2 being the long-wave speed and c0 the

minimum gravity–capillary phase speed; hence α0H > 1, and equation (2.18), which
governs the O(ε2) mean-flow component induced by the modulations of the packet,
is of the elliptic type. As it turns out, this mean flow controls the behaviour of the
tails of a lump (see § 3).

By a similar procedure, substituting the expansions (2.10) and (2.11), along with
(2.14), in the free-surface conditions (2.15) and (2.16), and collecting second-harmonic
terms, one finds that a2 and S2 satisfy

S2 − i tanh 2k0H a2 =
(
α0 + k2

0

)
S2

1 , (2.20a)(
α0 + 4k2

0

)
S2 − 2ik0a2 = 1

2

(
3k2

0 −
(
α0 + k2

0

)2)
S2

1 . (2.20b)

This equation system can be readily solved for a2 and S2 in terms of S2
1 .

Finally, by collecting primary-harmonic terms in the free-surface conditions (2.15)
and (2.16), and consistently eliminating a2, S2 and a1 correct to O(ε3), one may derive
an amplitude equation for S1(X, Y ). In view of conditions (2.5) at the bifurcation
point, all O(ε) and O(ε2) terms cancel out, and the resulting equation takes the form

−S1 + β
∂2S1

∂X2
+ γ

∂2S1

∂Y 2
= δ|S1|2S1 + ζ

∂a0

∂X
S1, (2.21)

where β , γ , δ and ζ are certain real coefficients. The equation system (2.18) and (2.21)
for the primary-harmonic envelope and the induced mean flow is a steady version
of the so-called Davey–Stewartson equations, derived in Davey & Stewartson (1974)
following Benney & Roskes (1969).
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Obtaining expressions for the coefficients in equation (2.21), especially those
multiplying the nonlinear terms, involves a considerable amount of algebra. Here, in
the interest of brevity, the coefficients β and γ of the linear terms on the left-hand
side of (2.21) are deduced from the linear dispersion relation, making use of the fact
that a lump comprises plane waves κ = (k, m) that are steady in the reference frame
of the lump. Hence,

D(k, m; α) ≡ κ(α + κ2)tanh κH − k2 = 0, (2.22)

where κ = |κ | and, at the carrier wavevector κ0 = (k0, 0),

D|0 = 0,
∂D

∂k

∣∣∣∣
0

=
∂D

∂m

∣∣∣∣
0

= 0, (2.23)

in view of (2.5). Expanding (2.22) in the vicinity of the bifurcation point,

α = α0 + ε2, k = k0 + ε �k, m = ε �m,

the O(1) and O(ε) terms vanish by (2.23) so, correct to O(ε2),

∂D

∂α

∣∣∣∣
0

+
1

2

∂2D

∂k2

∣∣∣∣
0

�k2 +
1

2

∂2D

∂m2

∣∣∣∣
0

�m2 = 0. (2.24)

Equation (2.24) is entirely equivalent to the left-hand side of (2.21) if one substitutes
S1 � exp{i(�k X + �m Y )}, so

β =

1
2

∂2D

∂k2

∣∣∣∣
0

∂D

∂α

∣∣∣∣
0

=
α0 + k2

0

k0

∂2ω

∂k2

∣∣∣∣
0

, γ =

1
2

∂2D

∂m2

∣∣∣∣
0

∂D

∂α

∣∣∣∣
0

=
α0 + k2

0

k0

∂2ω

∂m2

∣∣∣∣
0

, (2.25)

where

ω(κ) = {κ(α + κ2)tanh κH}1/2.

The coefficients δ and ζ of the nonlinear terms on the right-hand side of (2.21)
now can be read off from Djordjevic & Redekopp (1977) or Ablowitz & Segur
(1979). After converting to the non-dimensional variables used here, evaluating these
coefficients at the minimum gravity–capillary phase speed yields

δ =
1

2

(
α0 + k2

0

)3

{
(1 − σ 2)(9 − σ 2)α0 + k2

0(3 − σ 2)(7 − σ 2)

α0σ 2 − k2
0(3 − σ 2)

+ 8σ 2 − 2

α0

(1 − σ 2)2
(
α0 + k2

0

)
− 3k2

0σ
2

α0 + k2
0

}
, (2.26a)

ζ = 2
(
α0 + k2

0

) {
1 +

(
α0 + k2

0

)2 − k2
0

2α0

(
α0 + k2

0

)
}

, (2.26b)

where

σ 2 = tanh2k0H = k2
0

/(
α0 + k2

0

)2
.

It is easy to check that the coefficient γ > 0 and, as noted by Dias & Haragus-
Courcelle (2000), β > 0 as well. Equations (2.18) and (2.21), which govern the primary-
harmonic envelope and the induced mean flow, therefore, are both of the elliptic type.
In this instance, as remarked by Ablowitz & Segur (1979), the Davey–Stewartson
equations are not integrable by inverse scattering transforms.
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In the special case that transverse modulations are absent (∂/∂Y = 0), equa-
tion (2.18) can be readily solved for the induced mean flow:

∂a0

∂X
=

λ

Q2
|S1|2, (2.27)

and, upon substituting in (2.21), it is found that S1 satisfies a steady form of the NLS
equation:

−S1 + β
∂2S1

∂X2
+ ν|S1|2S1 = 0, (2.28)

where

ν = −δ +
ζ

1 − α0H

{
k2

0 −
(
α0 + k2

0

)(
3α0 + k2

0

)}
. (2.29)

It turns out that ν > 0 so (2.28) admits the envelope-soliton solution

S1 =

(
2

ν

)1/2

sech

{
X

β1/2

}
, (2.30)

which, combined with (2.9) and (2.11), furnishes the well-known two-dimensional
solution branches of solitary waves of elevation (+) and depression (–):

η = ±η0 sech

{(
α − α0

β

)1/2

(x − t)

}
cos k0(x − t) + · · · , (2.31)

where, to leading order in α − α0, the peak amplitude η0 is given by

η0 = 2

(
2

ν

)1/2

(α − α0)
1/2 + · · · . (2.32)

In the deep-water limit H → ∞, in particular, making use of (2.8) and (2.26a),
(2.29) yields ν → 11/32 so, according to (2.32), the peak amplitude of the bifurcating
solitary-wave solutions is given by

η0 =
16

(11)1/2
(α − α0)

1/2 + · · · , (2.33)

consistent with earlier studies (Dias & Iooss 1993; Akylas 1993; Longuet-Higgins
1993).

When both X- and Y -modulations are present, the primary-harmonic envelope and
the induced mean flow are coupled, and no analytical locally confined solutions of
equations (2.18) and (2.21) are known. Nevertheless, as discussed in § 4, it is possible
to compute such solutions numerically and thereby determine the branches of lumps
bifurcating at α = α0.

3. Behaviour at the tails of a lump
According to (2.30), when no transverse modulations are present, the wave envelope

decays exponentially and so does the induced mean flow (2.27). In water of finite depth,
therefore, two-dimensional gravity–capillary solitary wavepackets feature oscillatory
tails with exponentially decaying amplitude; only in deep water, where the induced
mean flow decays algebraically, are these tails algebraic (Akylas et al. 1998). The tails
of lumps behave quite differently, however, because the induced mean flow turns out
to decay algebraically at infinity, irrespective of the water depth.
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Specifically, returning to the elliptic mean-flow equation (2.18), taking the Fourier
transform in X and Y yields

∂a0

∂X
= λ

∫ ∞

−∞

∫ ∞

−∞
l2F{|S1|2}exp{i(lX + mY )}

Q2l2 + m2
dl dm, (3.1)

F{|S1|2} being the Fourier transform of |S1|2:

F{|S1|2} =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
|S1|2exp{−i(lX + mY )} dX dY.

Therefore, in the far field X2 + Y 2 → ∞,

∂a0

∂X
�

λ

4π2
I0

∫ ∞

−∞

∫ ∞

−∞
l2

exp{i(lX + mY )}
Q2l2 + m2

dl dm, (3.2)

where

I0 =

∫ ∞

−∞

∫ ∞

−∞
|S1|2 dX dY,

and, upon evaluating the double integral in (3.2),

∂a0

∂X
∼ − λ

2π

I0

Q

∂

∂Y

{
Y

X2 + Q2Y 2

}
. (3.3)

This confirms that the induced mean flow decays algebraically at infinity and, as a
result, controls the behaviour at the tails of a lump; the envelope S1 of the primary
harmonic (as well as the higher-harmonic envelopes) decays exponentially there
according to the elliptic equation (2.21), and is thus overwhelmed by the mean-flow
component.

For the same reason, the free-surface elevation at the tails of a lump is dominated
by the mean flow,

η �
ε2

α0

∂a0

∂X
(X2 + Y 2 → ∞), (3.4)

and decays algebraically as well:

η � − ε2

2π

λ

α0

I0

Q

∂

∂Y

{
Y

X2 + Q2Y 2

}
. (3.5)

4. Lump solutions
As already remarked, no analytical locally confined solution of equations (2.18) and

(2.21) is available. In the deep-water limit H → ∞, where the coupling of the envelope
with the induced mean flow is weak, (2.21) reduces to a steady two-dimensional NLS
equation of the elliptic type, for which Strauss (1977) provided a mathematical proof
that a non-trivial locally confined solution is possible. A discussion of lumps in deep
water, including the effect of the induced mean flow, is deferred to § 5. Here, as
suggested in Papanicolaou et al. (1994), this limit is used as the starting point for
computing locally confined solutions of the coupled equations (2.18) and (2.21), by
continuation in the parameter H .

We begin by computing locally confined solutions of (2.21) when H → ∞. In this
limit, it follows from (2.25) and (2.26) that

β → 1, γ → 2, δ → −11

32
. (4.1)
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0 5 10 15

–2

0

2.21

3.31

4.15

Ŝ

R

Figure 1. First three modes of the boundary-value problem (4.2)–(4.3) that governs localized
solutions of the envelope equation (2.21) in the deep-water limit H → ∞. —, ground state;
- - -, second mode; · · · , third mode.

Moreover, since λ → 0 according to (2.19), the forcing term on the right-hand side of
the mean-flow equation (2.18) vanishes; so a0 → 0 and, as noted above, the coupling
with the induced mean flow may be neglected in equation (2.21).

With the re-scaling Ŷ = Y/
√

2 and Ŝ1 = (11/32)1/2S1, we then seek localized solutions
of (2.21) which satisfy the radial NLS equation

d2Ŝ1

dR2
+

1

R

dŜ1

dR
− Ŝ1 + Ŝ3

1 = 0, (4.2)

where R2 =X2 + Ŷ
2
, subject to the boundary conditions

dŜ1

dR
= 0 (R = 0), (4.3a)

Ŝ1 → 0 (R → ∞). (4.3b)

The latter condition ensures that the disturbance remains locally confined, as required
for a lump.

The boundary-value problem (4.2)–(4.3) was studied in Chiao, Garmire & Townes
(1964), who found numerically a profile Ŝ1(R) that decays monotonically in 0 <R < ∞.
Apart from this ‘ground state’, we also computed other, oscillatory profiles as shown
in figure 1, and it appears that there exists a countably infinite set of such modes. In
the following, however, only the ground state will be considered.

Starting at large depth with the localized solution of (2.21) corresponding to the
ground state of (4.2)–(4.3), solutions to the coupled system (2.18) and (2.21) at finite
depth were obtained via numerical continuation by gradually decreasing H . The
differential equations were discretized using a pseudospectral method in terms of
Chebyshev polynomials, combined with a transformation that maps the (X, Y )-plane
into a bounded rectangular domain. The resulting nonlinear algebraic equations were
solved by Newton’s method in one quarter of the domain, exploiting symmetry.
Details of numerical implementation can be found in Kim (2005).

Figure 2 illustrates the computed profiles of the envelope S1(X, Y ) and the induced
mean flow ∂a0/∂X for H =3.5, H = 5 and H = 25, the latter value corresponding
essentially to deep water. As expected, the induced mean flow becomes stronger as
H is decreased and always prevails at infinity since it decays algebraically, while S1
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Figure 2. Representative profiles of the lump primary-harmonic envelope S1(X, Y ) and the
induced mean flow ∂a0/∂X, as obtained from the equation system (2.18) and (2.21) for
various values of H . —, X-cross-section for Y = 0; - - - , Y -cross-section for X = 0. (a) H =
3.5; (b) H = 5; (c) H = 25.

decays exponentially, there. As a check of the numerical computations, it was verified
that the decay of the mean flow at infinity is consistent with the asymptotic expression
(3.3) derived earlier.

Figure 3 is a plot of the envelope maximum, S1(0, 0), as H is varied. For comparison,
returning to (2.30), the maximum of the envelope of a two-dimensional solitary wave,
(2/ν)1/2, is also shown on the same graph. It is seen that the peak amplitude of a
lump, like that of a plane solitary wave, increases as H is increased. However, for a
given value of H , the peak amplitude of a lump,

η0 = 2S1(0, 0)(α − α0)
1/2 + · · · , (4.4)

exceeds that of its two-dimensional counterpart, as given by (2.33), roughly by a
factor of 1.5–2 depending on H .

5. Deep water
We now return to the case of deep water and discuss the bifurcation of gravity–

capillary lumps in this limit. As is evident from (2.14a), the perturbation expansions
(2.10) and (2.11) break down when H → ∞ because, as it turns out, the induced mean
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H

Figure 3. Peak amplitude of the primary-harmonic envelope S1 as H is varied. —,
three-dimensional envelope; - - -, two-dimensional envelope. The corresponding asymptotic
values in the deep-water limit H → ∞ are indicated by dotted lines.

flow is relatively weak, of O(ε3) rather than O(ε2) as assumed in (2.10) and (2.11).
This disordering is also hinted by the fact that, as noted in § 4, in the limit H → ∞,
the coupling of the primary harmonic with the induced mean flow vanishes according
to (2.18), so a0 → 0.

The way to rectify the situation is now well known. As suggested by Roskes (1969),
expansions (2.10) and (2.11) need to be modified such that the mean-flow terms
enter at O(ε3); furthermore, since the vertical coordinate becomes unbounded in deep
water, it is necessary to introduce the additional stretched coordinate Z = εz, the
velocity potential φ now being a function of both z and Z.

With these modifications, carrying out the perturbation analysis to O(ε3) confirms
that the primary-harmonic envelope S1(X, Y ) satisfies precisely the steady two-
dimensional NLS equation obtained by applying the formal limit H → ∞ to equation
(2.21), and the coefficients β, γ , and δ take the limiting values (4.1). To leading order,
therefore, the coupling with the induced mean flow is negligible and the envelope of
a deep-water lump is governed by the boundary-value problem (4.1)–(4.3) discussed
earlier. Based on the ground state plotted in figure 1, the peak amplitude of a lump
in deep water, to leading order in α − α0, is given by (4.4) with S1(0, 0) = 3.76;
this is the three-dimensional counterpart of the well-known expression (2.33) for
two-dimensional solitary waves in deep water.

Although the effect of the induced mean flow in deep water is of higher order,
the behaviour of the tails of a lump is controlled by the mean flow. As explained in
Akylas et al. (1998) for two-dimensional solitary waves in deep water, where a similar
non-uniformity arises, the reason is that the wave envelope decays exponentially at
infinity while the mean flow does so algebraically and eventually dominates at the
tails. Accordingly, in order to discuss the behaviour at the tails of a lump in deep
water, it is necessary to carry the perturbation analysis to O(ε4).

Hogan (1985) derived a fourth-order envelope equation for three-dimensional
modulations of gravity–capillary wavepackets in deep water, and we shall adapt
his analysis to the case of lumps. Allowing for the fact that the carrier oscillations
and the envelope move with speed 1 in the non-dimensional variables used here, and
evaluating the coefficients of his evolution equation at the bifurcation point, it is
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found that the primary-harmonic envelope S1(X, Y ) is governed by

−S1+
∂2S1

∂X2
+2

∂2S1

∂Y 2
+

11

32
|S1|2S1+iε

{
2

∂3S1

∂X∂Y 2
+

3

4
|S1|2 ∂S1

∂X

}
−εS1

∂φ̄

∂X

∣∣∣
Z=0

= 0, (5.1)

while the mean-flow potential ε2φ̄(X, Y, Z) (that replaces εA0(z, X, Y ) in (2.10))
satisfies Laplace’s equation

φ̄XX + φ̄YY + φ̄ZZ = 0 (0 > Z > −∞), (5.2)

subject to the boundary conditions

φ̄Z =
∂

∂X
|S1|2 (Z = 0), (5.3a)

φ̄ → 0 (Z → −∞). (5.3b)

To leading order, as expected, S1 satisfies the elliptic two-dimensional NLS equation
that is obtained from the Davey–Stewartson system (2.18) and (2.21) in the deep-water
limit H → ∞. It is easy to check that the higher-order modulation terms in (5.1)
affect only the phase of S1, resulting in O(ε2) corrections to the carrier wavenumber,
while the coupling with the induced mean flow produces an O(ε2) correction to the
wave amplitude.

The boundary-value problem (5.2)–(5.3) for the mean-flow potential φ̄ can be readily
solved by taking the Fourier transform in X and Y , and the associated free-surface
elevation η̄ is given by

η̄ = − ε3

α0

∫ ∞

−∞

∫ ∞

−∞
l2F{|S1|2}exp{i(lX + mY )}

(l2 + m2)1/2
dl dm, (5.4)

F{|S1|2} denoting the Fourier transform of |S1|2 as in (3.1).
Therefore, in the far field X2 + Y 2 → ∞,

η̄ ∼ ε3

4π2α0

I0

∂2

∂X2

∫ ∞

−∞

∫ ∞

−∞

exp{i(lX + mY )}
(l2 + m2)1/2

dl dm, (5.5)

where I0 is defined as in (3.2). Upon evaluating the double integral in (5.5) and
recalling that α0 = 1/4 in deep water, it is finally found that

η̄ ∼ 2ε3

π
I0

∂2

∂X2

{
1

(X2 + Y 2)1/2

}
. (5.6)

Comparing (5.6) with the analogous expression (3.5) in water of finite depth, it is
seen that the mean flow accompanying a lump in deep water is weaker and decays
faster than its finite-depth counterpart. Nevertheless, since η̄ decays algebraically, it
eventually prevails at the tails of a lump.

6. Discussion
Based on small-amplitude expansions, we have pointed out that gravity–capillary

lumps are possible for B < 1/3 on water of finite or infinite depth. Like two-
dimensional gravity–capillary solitary waves, these lumps bifurcate at the minimum
gravity–capillary phase speed and, in the small-amplitude limit, close to the bifurcation
point, take the form of fully localized wavepackets with envelope and crests moving at
the same speed, slightly below the minimum gravity–capillary phase speed. Moreover,
two symmetric lump-solution branches, one corresponding to elevation and the other
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to depression waves, bifurcate from infinitesimal sinusoidal wavetrains, as is the case of
two-dimensional solitary waves. The only essential difference of lumps from their two-
dimensional counterparts is that the induced mean flow always decays algebraically
at infinity and so do the tails of lumps, irrespective of the water depth. This is in
contrast to the tails of two-dimensional solitary waves which decay algebraically only
in deep water.

Since gravity–capillary lumps travel at speeds less than the minimum phase speed,
there is no possiblility of resonance with other parts of the water-wave spectrum,
precluding the formation of small-amplitude oscillations at infinity, similar to those
found at the tails of KdV solitary waves when the Bond number is less than 1/3. This
is consistent with the recent numerical work of Parau et al. (2005), who computed
locally confined gravity–capillary lumps based on the full water-wave equations, and
the rigorous existence proof of Groves & Sun (2005).

It is known that the bifurcation diagram of two-dimensional gravity–capillary
solitary waves is quite complicated, as, in addition to the two symmetric solution
branches that bifurcate at zero amplitude, there is an infinity of other, symmetric
and asymmetric, branches that bifurcate at finite amplitude (see, for example,
Champneys & Toland 1993). It is likely that analogous lump-solution branches
could be found but, in order to capture these branches, the asymptotic approach
taken here must be refined to account for exponentially small terms, as was done in
Yang & Akylas (1997) for two-dimensional solitary waves.

From a physical standpoint, however, a more important question, that remains
open, concerns the stability of the lumps found here. While, in analogy with the
stability properties of two-dimensional solitary waves (Calvo & Akylas 2002), one
might expect, close to the bifurcation point, the depression lump-solution branch
to be stable and the elevation branch to be unstable, there is a property of three-
dimensional wavepackets that has no counterpart in two dimensions: the elliptic–
elliptic Davey–Stewartson equations, which govern the evolution of the wavepacket
envelope and the induced mean flow in the small-amplitude limit, predict the formation
of a focusing singularity in finite time, if the initial amplitude is above a certain
threshold, the lump solution being at the borderline between stability and instability
(Ablowitz & Segur 1979; Papanicolaou et al. 1994). The role that this type of nonlinear
modulational instability may play in the propagation of lumps is not known. On the
other hand, lumps resemble wavepackets in the small-amplitude limit only, so the
focusing singularity of the envelope may not be relevant away from the bifurcation
point.

Another related issue of physical interest is how lumps may arise from more
general initial conditions. In shallow water, KP-I lumps are intimately connected
with the instability of KdV solitary waves to transverse perturbations; whether a
similar connection exists between gravity–capillary lumps and plane solitary waves
in water of finite or infinite depth is not known, although two-dimensional gravity–
capillary solitary wavepackets in fact are unstable to transverse modulations in the
small-amplitude limit (Zakharov & Rubenchik 1974; Saffman & Yuen 1978).

To address the questions raised above would require solving the unsteady water-
wave equations and, for this purpose, one would have to resort to fully numerical
simulations.

On the other hand, we have been able to make some progress towards settling
these issues in the context of a relatively simple model equation. Specifically, we
studied a generalization, that allows for variations in two spatial dimensions, of the
equation proposed by Benjamin (1992) for the propagation in one spatial dimension
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of long weakly nonlinear interfacial gravity–capillary waves in the strong-surface-
tension regime, when both the KdV and the Benjamin–Davis–Ono (BDO) dispersive
terms are equally important. In certain limits, this two-dimensional Benjamin equation
admits lumps of the wavepacket type, similar to those found on water of finite depth,
as well as lumps of the KP-I type. Out of the two symmetric branches of wavepacket
lumps that bifurcate at the extremum of the phase speed, the elevation branch can be
continued towards the KP-I lumps. Moreover, elevation lumps appear to be stable and
emerge from the instability of elevation solitary waves to transverse perturbations.
Detailed results will be reported in a forthcoming paper (Kim & Akylas 2005).

We wish to thank Professors Mark Ablowitz and Victor Shrira for helpful
discussions. This work was supported by the Air Force Office of Scientific Research,
Air Force Materials Command, USAF, under Grant Number FA9950-04-1-0125 and
by the National Science Foundation Grant Number DMS-0305940.
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